Robust Image Registration via Empirical Mode Decomposition

نویسندگان

  • Reza Abbasi-Asl
  • Aboozar Ghaffari
  • Emad Fatemizadeh
چکیده

Spatially varying intensity noise is a common source of distortion in images. Bias field noise is one example of such distortion that is often present in the magnetic resonance (MR) images. In this paper, we first show that empirical mode decomposition (EMD) can considerably reduce the bias field noise in the MR images. Then, we propose two hierarchical multi-resolution EMD-based algorithms for robust registration of images in the presence of spatially varying noise. One algorithm (LR-EMD) is based on registering EMD feature-maps of both floating and reference images in various resolution levels. In the second algorithm (AFR-EMD), we first extract an average feature-map based on EMD from both floating and reference images. Then, we use a simple hierarchical multi-resolution algorithm based on downsampling to register the average feature-maps. Both algorithms achieve lower error rate and higher convergence percentage compared to the intensity-based hierarchical registration. Specifically, using mutual information as the similarity measure, AFR-EMD achieves 42% lower error rate in intensity and 52% lower error rate in transformation compared to intensity-based hierarchical registration. For LR-EMD, the error rate is 32% lower for the intensity and 41% lower for the transformation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Multi-Scale Visible and Thermal Images using EMD for Improved Face Recognition

This paper presents the implementation of face recognition system using JDL framework. Fusion of visible and thermal images enhances the recognition rate and efficiency under varying illumination conditions. In this system, registration of visible and thermal images is performed using Fourier based method and fusion is performed using Empirical Mode Decomposition (EMD). The feature extraction a...

متن کامل

Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...

متن کامل

Review on Image Watermarking using Bidimensional Empirical Mode Decomposition

As digital image watermarking has become an important tool for copyright protection, various watermarking schemes have been proposed in literature. Among them image watermarking using bidimensional empirical mode decomposition (EMD) is a newly developed method. In this review paper a comparison of EMD based methods of image watermarking is done. The use of Bidimensional Empirical Mode Decomposi...

متن کامل

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

A bi-dimensional empirical mode decomposition based watermarking scheme

An invisible robust, non blind watermarking scheme for digital images is presented. The proposed algorithm combines the Discrete Wavelet Transform (DWT) and the Bi-dimensional Empirical Mode Decomposition (BEMD). Unlike previous works where the watermark bits are embedded directly on the wavelet coefficients, the proposed scheme suggests rather the embedding of the wavelet coefficients of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04247  شماره 

صفحات  -

تاریخ انتشار 2017